a. What’s the topic of the audio?

b. What are the two best tools related to the topic mentioned in the audio?

c. What’s the most important feature of people performing the process?
d. Complete the blanks:
e. And they do that to ………………….. the source of the problem. We've already spent a fair amount of time this semester talking about searches. ………………………….. for searching. Debugging is simply a search process. When you are searching a list to see whether it has an element, you don't ……………………….. probe the list, hoping to find whether or not it's there. You find some way of ……………………………. going through the list. Yet, I often see people, when they're debugging, proceeding at what, to me, looks almost like a random ……………………………… of looking for the bug. That is a problem that may not terminate. So you need to be careful.

For at least four decades, people have been building tools called debuggers. Things to help you find bugs. And there are some built into Idol. My personal view is most of them are not worth the trouble. The two best debugging tools are the same now that they have almost always been. And they are the print statement, and reading. There is no substitute for reading your code. Getting good at this is probably the single most important skill for debugging. And people are often resistant to that. They'd rather single step it through using Idol or something, than just read it and try and figure things out. The most important thing to remember when you're doing all of this is to be systematic. That's what distinguishes good debuggers from bad debuggers. Good debuggers have evolved a way of systematically hunting for the bugs. And what they're doing as they hunt, is they're reducing the search space. And they do that to localize the source of the problem. We've already spent a fair amount of time this semester talking about searches. Algorithms for searching. Debugging is simply a search process. When you are searching a list to see whether it has an element, you don't randomly probe the list, hoping to find whether or not it's there. You find some way of systematically going through the list. Yet, I often see people, when they're debugging, proceeding at what, to me, looks almost like a random fashion of looking for the bug. That is a problem that may not terminate. So you need to be careful.
