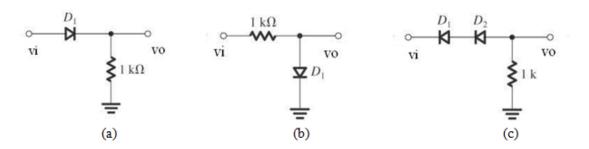
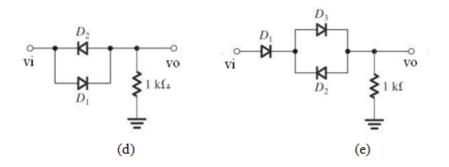

Trabajo Práctico 1: Diodo.

Ejercicio 1

El diodo D tiene la característica mostrada. Calcular gráficamente el punto de trabajo Q en los siguientes casos:

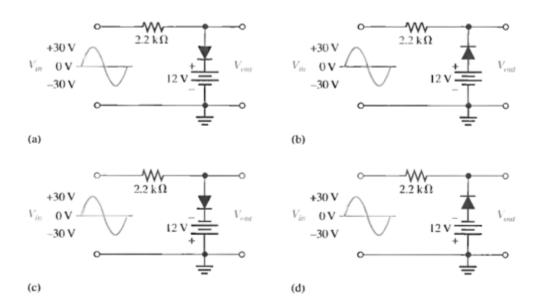
- a) VCC = 2 V, R = 100Ω
- b) VCC = 1 V, R = 20Ω
- c) VCC = 15 V, R = 1 K Ω
- d) Analizar cómo varía Q si:
 - VCC varía y R es constante
 - VCC es constante y R varía

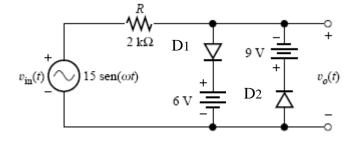




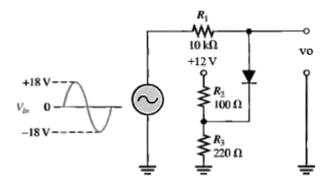
Ejercicio 2

Si $vi(\omega t)$ es una onda senoidal de 10 V pico y f = 1 KHz dibujar la forma de onda de salida $vo(\omega t)$ para cada uno de los siguientes circuitos suponiendo:


- a) diodos ideales
- b) $V\gamma = 0.7 \text{ V}$, $Rd = 0 \Omega$

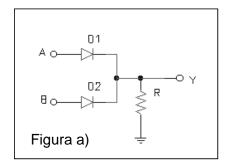

Ejercicio 3

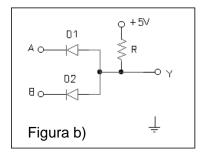
- a) Graficar la tensión de salida usando para el diodo un modelo lineal: $V\gamma$ = 0.7 V y Rd= 0 Ω . Justificar.
- b) Verificar formas de onda utilizando un simulador con base SPICE.


Ejercicio 4

Utilizando los resultados del ejercicio 4 y suponiendo para los diodos el modelo lineal: $V\gamma = 0.7$ V y Rd = 0 Ω , analizar el funcionamiento y dibujar la forma de onda de salida vo(t).

Ejercicio 5


Suponiendo para el diodo un modelo $V\gamma$ = 0.7 V y Rd= 0 Ω , dibujar la forma de onda de salida. (Ayuda: convendría reemplazar el divisor resistivo por su modelo de Thevenin equivalente)



Ejercicio 6

Una aplicación simple de los diodos es la realización de funciones lógicas digitales. Se considerará que para un circuito con lógica positiva los valores de tensión cercanos a 0 V corresponden al estado "0" lógico y los valores de tensión cercanos a +5 V corresponden al estado "1" lógico.

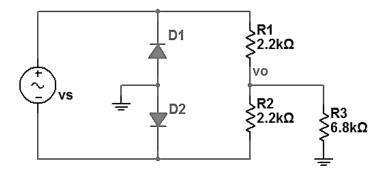
- a) Considerando <u>diodos ideales</u> demostrar que el circuito de la figura a) realiza la función lógica OR determinada por: Y = A + B, según la cual la salida Y tendrá el valor lógico "1" (+5 V) si A ó B es igual a "1" (+5 V).
- b) Realizando un análisis similar demostrar que el circuito de la figura b) realiza la función lógica AND determinada por Y = A.B, según la cual la salida Y tendrá el valor lógico "1" (+5 V) sólo si A y B son iguales a "1" (+5 V).

Ejercicio 7

Considerando que los diodos pueden modelarse por $V\gamma$ = 0.7 V y Rd = 0 Ω , completar las tablas de verdad de las compuertas OR y AND del ejercicio anterior.

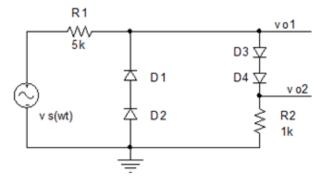
a) compuerta OR

A [V]	B [V]	Y [V]
0	0	
5	0	
0	5	
5	5	


b) compuerta AND

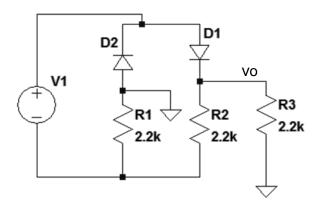
A [V]	B [V]	Y [V]
0	0	
5	0	
0	5	
5	5	

Ejercicio 8

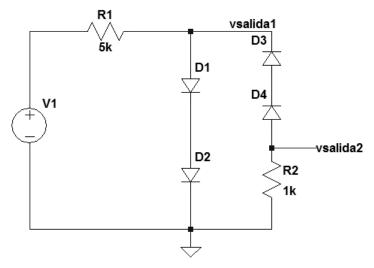

Analizar el funcionamiento del circuito y dibujar la forma de onda de la tensión de salida $vo(\omega t)$ respecto de un ciclo de la tensión de entrada $vs(\omega t)$. Justificar. $vs(\omega t) = 10 \text{ V sen}\omega t$.

- a) Suponer diodos ideales
- b) Suponer $V\gamma = 0.7 \text{ V y Rd} = 0 \Omega$.
- c) Simular el circuito y comparar.

Ejercicio 9


Dibujar las formas de onda en los puntos indicados vo1 y vo2. Justificar. Suponer que los diodos se modelan por una tensión VD = 0.7 V cuando conducen. La tensión vs es una tensión senoidal de 5 V de amplitud pico y frecuencia 50 Hz. Simular el circuito y comparar resultados

Ejercicio 10


Analizar el funcionamiento del circuito y dibujar la forma de onda de la tensión de salida $vo(\omega t)$ respecto de un ciclo de la tensión de entrada $vs(\omega t)$. Justificar. $vs(\omega t) = 10 \text{ V}$ sen ωt .

- a) Suponer diodos ideales
- b) Suponer $V\gamma = 0.7 \text{ V y Rd} = 0 \Omega$.
- c) Simular el circuito y comparar

Ejercicio 11

Dibujar las formas de onda en los puntos indicados vo1 y vo2. Justificar. Suponer que los diodos se modelan por una tensión VD = 0.7 V cuando conducen. La tensión vs es una tensión senoidal de 5 V de amplitud pico y frecuencia 50 Hz. Simular el circuito y comparar

Bibliografía sugerida:

- Dispositivos electrónicos, T. Floyd, Ed. Pearson (Octava Edición)
- Electrónica: Teoría de circuitos y dispositivos electrónicos, R. Boylestad-L. Nashelsky, Ed. Pearson (Décima Edición)
- Principios de Electrónica, A. Malvino D. Bates, Ed. Mc Graw Hill (Séptima Edición)
- Circuitos Microelectrónicos: Análisis y diseño, M. Rashid, Ed. International Thomson Editores